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In paper [1] Rumiantsev proves a theorem whereby the stability of the equi-
1librium position of a hollow body filled with two homogeneous nonmixing
liqulds with surface tenslon property, is guaranteed if the functional

F=V 4 aS -+ a6 + as0;, V="Vo+ SSSPlV1dT+ SSS p2Vadt
T T2
has an 1solated minimum F, for the equilibrium position.

Here V¥ 1s the potential energy of the external forces applled to the
body (Vo) and liquids; T,, T, are the volumes occupied by the first and
second liquids, respectively; S 1s the interface area of the liquids; o,
0, are the areas of contact of the liquids with the cavity wall; o, a,, a3
are the corresponding coefflclents of surface tension; p,, p, are the den-
sltles, py;> pay .

A necessary condition for a minimum in the functional F 1is that it hase
a weak minimum. The present paper givee sufficlent conditions for a weak
minimum 1n F when the body has the form of a heavy physical pendulum with
a cylindrical cavity filled with two heavy liquids. Here the problem of a
weak minimum in F reduces to finding the conditions of & minimum in the
function (G of the body's coordinates. Such a device was employed by
Pozharitskili [2] in solving a similar minimum problem for a body containing
a liquid devold of surface tension.

Let there be an equilibrium position at which the interface of the liquids
lies at a finite distance from the end faces of the cavity and intersects
the side walls, which will be assumed vertical for simplicity. The heavier
liquld occupies the lower part of the cavity.

We introduce the statlionary coordinate axes x,y,&, as follows: the axls
2z, 1s directed upward along the vertical, y, is the axis of the pendulum,
and x, 1s orthogonal to the plane =z,y, . *he movable axes xyx linked
with the solld portilon of the pendulum are: the z-axis parallel to the cavity
wall, the x-axis in the plane of swing, and the y-axis coincident with y, .

To abbreviate our notation we introduce the notation
0f fi,x
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1. Let us indicate the method of obtaining the function ¢ . In the
equilibrium position the interface =z = f;{x, y) is determined from Equation

g (p1 — P2) fo — a {ID* (fo)lx + [DY (fo)],} = const = ¢, ()
with the boundary condition
dy dz oy — Oy
O (f)r — OV (fo) 37 =~
along the line £ of intersection of the cavity walls with the plane xy .

Let the body be inclined at a small angle ¢4 from the equilibrium posi-
tion. The equation of the interface 2= f(z,y,9). For which &F = O
for a fixed § ,

g(P1— pg) (frcos & — zsin §) — a {[O*\(f)], T+ [DY (H)]) = const = C;  (2)
with the boundary condition
dy dr Ay — Ol
D (f1) T oY ()77 =3
Let us suppose that: fo{z, ¥) and flz, ¥, &) are single-valued functions
of their coordinates with bounded derivatives, and that the differences
(h{; foh {f1,x — fo,u)v (fry — foy) are spall for small §, or, more precisely,

We must now prove that the functlonal F has a weak minimum for a fixed
Q if the interface is given by Equation (2). To do this we can make use
of the second varistion of 7 .

The functional F clearly depends on ¢ and on the shape of the inter-
face z = f{x, y) . As our measure of the inclination of the interface we
take { = J .- J, , 1.e. 1ts displacement along the z-axis. Assuming ( and
its derivatives to be small and O, to be fixed, we obtain the following
expression for the second varlation:

207 = ({8 (01— cos 007 o[, P7 0 = 1,V O a0

)]
Here {0) is a region of area (1 bounded by the curve £ . Usually &7
also includes a curvilinear integral over £ . In our case this integral is

lacking due to the shape of the cavity and the cholce of the measure of
inclination.

It 18 clear that

o .
62F>K§§(§2+grad2§)d§2 (ZK:.min {(pj_f—!g){’('f}s 4, — 5 JH
© ) (t—- 1,x+f1, 3;) 3

This 1s sufficient in order for # to have a minimum G () = F(3, f,) for
a fixed +},. since )
F(d,f)—G(H)=08F + B:SS grad®{ dQ (B—0, it ax € Et —0)
) B
We choose ¢ > 0O such that g < }(/2 is fulfilled for
! maXay {Es ';n} < e
Then N
F@.N)—G®)>+kK \ (5t - grad? £) dQ >0 (£ +0)
)
This enables us to prove the following theorem.

Theorem . The functional F has an isolated minimum F; if and
only if the function G(ﬁ) has an isolated minimum Fp

The proof here is similar to that given in [3].

Sufficlency . Let G> F for 9=0; since FUh. 1> G ()
for all ¢ and =0, then certainly F > F, , provided at least one of
the two following conditions is fulfilled: =0, {=£0.
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Necessity . Let F>F, for all positions of the system close
to the equilibrium position. Then & > F, as well, since the positlon of
the system described by the interface z = f, and the small angle 90 is
alco clote,

2, We can now derlve the condition for a minimum in ¢ by uslng the
quadratic portion of the increment ¢ — Fy To do thls, we break down the

latter into two parts
’ G — Fy= A\F -+ AF
Here a,F 1s the increment in F when the system &s a single solld body
is inclined at the angle &, and A.F = — §°F 1s the increment in F wupon

displacement of the interface from the position =z = S, to the position
z=/f, , l.e. for (=), ~Jp

The equation for ¢, 18 obtained by subtracting (1) from (2) and retain-
ing only terms of the f{lrst order of smallness in ¢ and ¢,

g{pr— ) (& — 28} — e ({P¥ ol + [Py €§1}Iy} = ¢onst = ¢; — 0 3)
with the boundary condition 7
dy .y 8%
P* (g 5y — PY (&) g7 =0
To compute €, —Co We integrate (3) over the region (0)

q__%:_g%:_@“mdg
[}

{the integral of ( over {0} is equal %o zero by virtue of the incompressi-
bility of liquids).

It is glear that in the expression for 6°F we can replace J, by Jo
by virtue of the assumptions made as regards thelr closeness.

Multiplying {3) by ¢, and integrating over the region {Q) , we obtain

a-zr=—§-<p¢~—pz>gsgxﬁma
{2

In Equation {3) we can make the substitution J ==U¢ (z,y), . Then

G«—Fg:::—;*g§2{_Mzom(pl-—gz)§§x(péQJ

&
In order for ¢ to have a minimum, it is sufficient that
»
()

Here M 1s the mass and 2, the coordinate of the center of mass of the
entire system in the equilibrium position.

With o = a;= ap= 0 , the gquantity ¢ and condition (%) are as follows:

2

Q= — —éﬁx\mdf}, x"fzt){(f’a*Px)DS”ng“(SS““IQ )2]
o S

(sk',') (£2)

1.e. they coincide with the analogous condition obtained in [2],

In the particulsr case where the caviiy is & circular cylinder of radius
% , the axis of the cavity passes through the point of attachment, and
;= ap » condition (4) can be written in finite form

‘”20<"“““[(Pl"92) 5{“ """“““}ﬁ: I2 (M) _I (kzlfii&:,@)

g Ty (AR) -+ (M) LI (AR) Vo
Here I,(\R) 1s a modified Bessel function.

-
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